

Lecture 20: Spectral Sequence (I)

Many applications of (co)homology theory are reduced to the computation

$$\mathrm{H}(\textit{\textbf{C}}^{ullet},\delta)$$

of (co)homologies of certain (co)chain complexes. Usually the differential δ is complicated, making the computation difficult.

However, if we observe "part" of the differential δ is simple, say

$$\delta = \delta_1 + \delta_2$$

while the computation of δ_1 -cohomology is easier to perform, then we would like to use the δ_1 -cohomology to compute the full δ -cohomology. This is the idea of spectral sequence.

Motivation

Let us motivate this idea by a standard example.

Consider the double complex

$$K = \bigoplus_{p,q \ge 0} K^{p,q}$$

which is equipped with two differentials

$$\begin{cases} \delta_1: \mathsf{K}^{p,q} \to \mathsf{K}^{p,q+1} \\ \delta_2: \mathsf{K}^{p,q} \to \mathsf{K}^{p+1,q} \end{cases}$$

such that

$$\delta_1^2 = \delta_2^2 = 0, \quad \delta_1 \delta_2 + \delta_2 \delta_1 = 0.$$

Consider the total complex

$$\operatorname{Tot}^{\bullet}(K), \quad \operatorname{Tot}^{n}(K) = \bigoplus_{p+q=n} K^{p,q}$$

with the differential

$$D = \delta_1 + \delta_2$$
.

Our assumption on δ_1, δ_2 implies that

$$D^2=0.$$

Therefore $(\operatorname{Tot}^{\bullet}(K), D)$ indeed defines a cochain complex, and we are interested in

$$\operatorname{H}^{\bullet}(\operatorname{Tot}^{\bullet}(K),D).$$

Let x be a representative of an element in $\mathrm{H}^m(\mathrm{Tot}^\bullet(K), D)$. We can decompose x into

$$x = x_0 + x_1 + \cdots, \quad x_i \in K^{i,m-i}.$$

The cocycle condition Dx = 0 is equivalent to

$$\begin{cases} \delta_1 x_0 = 0 \\ \delta_2 x_0 = -\delta_1 x_1 \\ \delta_2 x_1 = -\delta_1 x_2 \\ \vdots \end{cases}$$

Let us formally write

$$x_1$$
" = " - $\delta_1^{-1}\delta_2 x_0$, x_2 " = " - $\delta_1^{-1}\delta_2 x_1$, ...

Here the inverse δ_1^{-1} does not exist and this expression is only heuristic. Then we would solve

$$x'' = "\frac{1}{1 + \delta_1^{-1} \delta_2} x_0$$

while x_0 represents a cocycle for $(\operatorname{Tot}^{\bullet}(K), \delta_1)$.

Intuitively, we treat δ_2 as a perturbation of δ_1 and

$$D = (\delta_1 + \delta_2)^{"} = "\delta_1(1 + \delta_1^{-1}\delta_2).$$

So

$$Dx^{"} = "\delta_1(1 + \delta_1^{-1}\delta_2) \frac{1}{1 + \delta_1^{-1}\delta_2} x_0^{"} = "\delta_1 x_0 = 0.$$

The above discussion is of course vague and heuristic. But it motivates the following idea: we can construct a D-cocycle x by first looking at a δ_1 -cocycle x_0 as a leading approximation, and then constructing

$$x_1, x_2, \cdots$$

order by order using information from $H^{\bullet}(\delta_1)$.

This leads to the following statements.

If
$$H^{\bullet}(\delta_1) = 0$$
, then $H^{\bullet}(D) = 0$.

In fact, let x be a D-cocyle as above. Since

$$\delta_1 x_0 = 0$$

and $H^{\bullet}(\delta_1) = 0$, we can find

$$y_0 \in K^{0,m-1}$$
 such that $x_0 = \delta_1 y_0$.

Replacing x by $x - Dy_0$, we can assume $x_0 = 0$ so x starts from x_1 .

Then

$$Dx = 0 \Rightarrow \delta_1 x_1 = 0.$$

By the same reason, we can further kill x_1 to assume that x starts from x_2 . Iterating this process, we can eventually find y such that

$$x = Dy$$
.

So x is a D-coboundary. It follows that $H^{\bullet}(D) = 0$.

If $H^{\bullet}(\delta_1) \neq 0$, then we need to understand

whether
$$\delta_1 x_{i+1} = -\delta_2 x_i$$
 is solvable.

This puts extra condition on the initial data x_0 that allows to be an approximation of a D-cocycle. For example, we want to solve

$$\delta_1 x_1 = -\delta_2 x_0.$$

Since

$$\delta_1(\delta_2 x_0) = -\delta_2 \delta_1 x_0 = 0,$$

we know $-\delta_2 x_0$ is δ_1 -closed. The problem is

whether
$$-\delta_2 x_0$$
 is δ_1 -exact.

We can view

$$\delta_2: \mathrm{H}^{\bullet}(\delta_1) \to \mathrm{H}^{\bullet}(\delta_1)$$

as defining a cochain complex $(H^{\bullet}(\delta_1), \delta_2)$, then the solvability of x_1 asks that the class $[x_0] \in H^{\bullet}(\delta_1)$ is in fact δ_2 -closed

$$\delta_2[\mathsf{x}_0]=0.$$

Therefore the "2nd"-order approximation of a D-cohomology is

$$\mathrm{H}^{\bullet}(\mathrm{H}^{\bullet}(\delta_1), \delta_2).$$

This will be called the E_2 -page. Similarly, we will have E_3 -page, E_4 -page, etc, and eventually the full description of D-cohomologies. Such process is the basic idea of spectral sequence.

Spectral sequence for filtered chain complex

Spectral sequences usually arise in two situations

- 1. A \mathbb{Z} -filtration of a chain complex: a sequence of subcomplexes $\cdots \subset F_p \subset F_{p+1} \subset \cdots$.
- 2. A \mathbb{Z} -filtration of a topological space: a family of subspaces $\cdots \subset X_p \subset X_{p+1} \subset \cdots$.

We first discuss the spectral sequence for chain complexes.

Definition

An (ascending) filtration of an R-module A is an increasing sequence of submodules

$$\cdots \subset F_p A \subset F_{p+1} A \subset \cdots$$

indexed by $p \in \mathbb{Z}$. We always assume it is exhaustive and Hausdorff

$$\bigcup_{p} F_{p} A = A \quad (\text{exhaustive}), \quad \bigcap_{p} F_{p} A = 0 \quad (\text{Hausdorff}).$$

The filtration is bounded if $F_pA = 0$ for p sufficiently small and $F_pA = A$ for p sufficiently large.

The associated graded module $\operatorname{Gr}_{ullet}^F A$ is defined by

$$\operatorname{Gr}_{\bullet}^F(A) := \bigoplus_{p \in \mathbb{Z}} \operatorname{Gr}_p^F A, \quad \operatorname{Gr}_p^F A := F_p A / F_{p-1} A.$$

A filtered chain complex is a chain complex (C_{\bullet}, ∂) together with an (ascending) filtration F_pC_i of each C_i such that the differential preserves the filtration

$$\partial(F_pC_i)\subset F_pC_{i-1}.$$

In other words, we have an increasing sequence of subcomplexes

$$F_pC_{\bullet}\subset C_{\bullet}$$
.

Remark

There is also the notion of a descending filtration. We will focus on the ascending case here.

A filtered chain complex induces a filtration on its homology

$$F_p \operatorname{H}_i(C_{\bullet}) = \operatorname{Im}(\operatorname{H}_i(F_pC_{\bullet}) \to \operatorname{H}_i(C_{\bullet})).$$

In other words, an element $[\alpha] \in H_i(C_{\bullet})$ lies in $F_p H_i(C_{\bullet})$ if and only if there exists a representative $x \in F_p C_i$ such that $[\alpha] = [x]$.

Its graded piece is given by

$$\operatorname{Gr}_{p}^{F} \operatorname{H}_{i}(C_{\bullet}) = \frac{\operatorname{Ker}(\partial : F_{p}C_{i} \to F_{p}C_{i-1})}{F_{p-1}C_{i} + \partial C_{i+1}}.$$

Notation

Our notation of quotient means the quotient of the numerator by its intersection with the denominator, i.e., $\frac{A}{B}:=\frac{A}{A\cap B}$.

Definition

Given a filtered R-module A, we define its Rees module as a submodule of $A[z,z^{-1}]$ by

$$A_F := \bigoplus_{p \in \mathbb{Z}} F_p A \ z^p \subset A[z, z^{-1}].$$

Our conditions for the filtration can be interpreted as follows

- 1. increasing filtration: A_F is a R[z]-submodule of $A[z,z^{-1}]$ and $z:A_F\to A_F$ is injective.
- 2. exhaustive: $A_F[z^{-1}] := A_F \otimes_{R[z]} R[z, z^{-1}]$ equals $A[z, z^{-1}]$.
- 3. Hausdorff: $\bigcap_{p\geq 0} z^p A_F = 0 \text{ in } A[z, z^{-1}].$

The associated graded module is given by

$$\operatorname{Gr}^F_{\bullet}(A) := A_F/zA_F.$$

Geometrically, we can think about $A[z,z^{-1}]$ as the space of algebraic sections of the trivial bundle on \mathbb{C}^* with fiber A.

Then A_F defines the extension of this bundle to \mathbb{C} , whose fiber at 0 is precisely $\mathrm{Gr}_{\bullet}^F(A)$.

Let $(C_{\bullet}, \partial, F_{\bullet})$ be a filtered chain complex. Let us denote its Rees module by

$$C_F := \bigoplus_{p \in \mathbb{Z}} F_p C_{\bullet} \ z^p \subset C_{\bullet}[z, z^{-1}].$$

 (C_F,∂) is also a subcomplex of $(C_{ullet}[z,z^{-1}],\partial)$. This defines a map

$$\mathrm{H}_{\bullet}(\mathit{C}_{\mathit{F}},\partial) \to \mathrm{H}_{\bullet}(\mathit{C}_{\bullet}[z,z^{-1}],\partial) = \mathrm{H}_{\bullet}(\mathit{C}_{\bullet},\partial)[z,z^{-1}].$$

The image of

$$\mathrm{H}_{\bullet}(\mathcal{C}_{F},\partial) \to \mathrm{H}_{\bullet}(\mathcal{C}_{\bullet},\partial)[z,z^{-1}].$$

defines a $\mathbb{C}[z]$ -submodule of $H_{\bullet}(C_{\bullet}, \partial)[z, z^{-1}]$. It induces a filtration on $H_{\bullet}(C_{\bullet}, \partial)$ as described above.

Our goal is to analyze this map in order to extract the information about this induced filtration on $H_{\bullet}(\mathcal{C}_{\bullet}, \partial)$.

Firstly

$$\mathrm{H}_{\bullet}(C_{F},\partial) = \bigoplus_{p \in \mathbb{Z}} \mathrm{H}_{\bullet}(F_{p}C_{\bullet},\partial)z^{p}.$$

However, the z-action

$$z: \mathrm{H}_{\bullet}(\mathcal{C}_{F}, \partial) \to \mathrm{H}_{\bullet}(\mathcal{C}_{F}, \partial)$$

may not be injective. Those elements that are annihilated by z^m for some finite m will be killed under φ .

One way to kill such elements is to look at $\operatorname{im}(z^N)$ for N big enough. This motivates the following construction.

Let us define

$$E^r := \frac{\{x \in C_F | \partial x \in z^r C_F\}}{z C_F + z^{1-r} \partial C_F}.$$

 E^r can be viewed as the r-th order approximation. E^r carries a differential

$$\partial_r: E^r \to E^r, \quad [x] \to z^{-r}[\partial x].$$

Obviously, $\partial_r^2 = 0$. We can define its homology by

$$\mathrm{H}(E^r,\partial_r):=rac{\ker\partial_r}{\mathrm{im}\,\partial_r}.$$

Claim

The homology of (E^r, ∂_r) is precisely E^{r+1}

$$\mathrm{H}(E^r,\partial_r)=E^{r+1}.$$

Proof: Assume $[x] \in \ker \partial_r$ in E^r . $\partial_r[x] = z^{-r}[\partial x] = 0$ implies the existence $\alpha, \beta \in C_F$ such that

$$\partial x = z^{r}(z\alpha + z^{1-r}\partial\beta) = z^{r+1}\alpha + z\partial\beta, \quad \partial\beta \in z^{r-1}C_{F}.$$

We have $\partial(x-z\beta)=z^{1+r}\alpha$, so $[x-z\beta]$ defines an element in E^{r+1} . This class does not depend on the choice of α,β .

Therefore we have a natural map

$$f : \ker \partial_r \to E^{r+1}$$

which is clearly surjective.

Assume $[x] = \partial_r[y]$. Then there exists $u, v \in C_F$ such that

$$x = z^{-r}\partial y + zu + z^{1-r}\partial v.$$

So

$$f([x]) = [x - zu] = [z^{-r}\partial(y + zv)] = 0.$$

Therefore

$$\operatorname{im} \partial_r \subset \ker f$$
.

On the other hand, assume $\mathit{f}([\mathit{x}]) = 0$. Then there exists $\mathit{u}, \mathit{v} \in \mathit{C}_\mathit{F}$ such that

$$\mathbf{x} - \mathbf{z}\beta = \mathbf{z}\mathbf{u} + \mathbf{z}^{-\mathbf{r}}\partial\mathbf{v}, \quad \partial\mathbf{u} = \mathbf{z}^{\mathbf{r}}\alpha.$$

We find $[x] = \partial_r[v]$. Hence

$$\ker f \subset \operatorname{im} \partial_r$$
.

It follows that $\ker f = \operatorname{im} \partial_r$. This proves the claim.

We can describe (E^r, ∂_r) explicitly in terms of components. Let

$$(\mathit{C}_{\mathit{F}})_{p,q} := \mathit{F}_{p}\mathit{C}_{p+q}.$$

There is a natural identification

$$C_F = \bigoplus_{p,q \in \mathbb{Z}} (C_F)_{p,q}.$$

Similarly, we can decompose

$$E^r = \bigoplus_{p,q \in \mathbb{Z}} E^r_{p,q}$$

where

$$E_{p,q}^{r} = \frac{\{x \in F_{p}C_{p+q} | \partial x \in F_{p-r}C_{p+q-1}\}}{F_{p-1}C_{p+q} + \partial F_{p+r-1}C_{p+q+1}}.$$

The differential ∂_r acts on components by

$$\partial_r: E^r_{p,q} \to E^r_{p-r,q+r-1}, \quad x \to \partial x.$$

 E^0 is given by

$$E^{0} = C_{F}/zC_{f}, \quad E^{0}_{p,q} = \operatorname{Gr}_{p}^{F} C_{p+q} = \frac{F_{p}C_{p+q}}{F_{p-1}C_{p+q}}.$$

 E^1 is given by

$$E^{1} = \frac{\{x \in C_{F} | \partial x \in zC_{F}\}}{zC_{F} + \partial C_{F}} = \mathrm{H}(C_{F}/zC_{F}, \partial), \quad E^{1}_{p,q} = \mathrm{H}_{p+q}(\mathrm{Gr}_{p}^{F} C_{\bullet}).$$

If the filtration of C_i is bounded for each i, then for any p, q,

$$E_{p,q}^r = \frac{\{x \in F_p C_{p+q} | \partial x = 0\}}{F_{p-1} C_{p+q} + \partial C_{p+q+1}} = \operatorname{Gr}_p \operatorname{H}_{p+q}(C_{\bullet}) \quad \text{for} \quad r >> 0.$$

In this case, we say $\{E^r\}_r$ converges to $\mathrm{Gr}_{ullet}\,\mathrm{H}(\mathit{C}_{ullet})$ and write

$$E^{\infty} = \operatorname{Gr}_{\bullet} \operatorname{H}(C_{\bullet}).$$

Motivated by the above discussion, we now give the formal definition of spectral sequence.

Definition

A spectral sequence (of *R*-modules) consists of

- ▶ an *R*-module $E_{p,q}^r$ for any $p,q \in \mathbb{Z}$ and $r \ge 0$;
- ▶ a differential $\partial_r: E^r_{p,q} \to E^r_{p-r,q+r+1}$ such that $\partial_r^2 = 0$ and $E^{r+1} = H(E^r, \partial_r)$.

A spectral sequence converges if for any p, q, we have

$$E_{p,q}^r = E_{p,q}^{r+1} = \cdots$$
 for $r >> 0$.

This limit will be denoted by $E_{p,q}^{\infty}$.

Theorem

There is an associated spectral sequence for any filtered chain complex $(C_{\bullet}, \partial, F_{\bullet})$ where

$$E_{p,q}^{r} = \frac{\{x \in F_{p}C_{p+q} | \partial x \in F_{p-r}C_{p+q-1}\}}{F_{p-1}C_{p+q} + \partial F_{p+r-1}C_{p+q+1}}$$

and

$$\partial_r: E^r_{p,q} \to E^r_{p-r,q+r-1}, \quad x \to \partial x.$$

The E^1 -page of the spectral sequence is

$$E_{p,q}^1 = \mathrm{H}_{p+q}(\mathrm{Gr}_p^F C_{\bullet}).$$

If the filtration of C_i is bounded for each i, then the spectral sequence converges and

$$E_{p,q}^{\infty} = \operatorname{Gr}_{p} \operatorname{H}_{p+q}(C_{\bullet}).$$