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Lecture 20: Spectral Sequence (1)
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Many applications of (co)homology theory are reduced to the
computation
H(C,§)

of (co)homologies of certain (co)chain complexes. Usually the
differential § is complicated, making the computation difficult.
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However, if we observe "part” of the differential § is simple, say
6 =01 + 09

while the computation of §;-cohomology is easier to perform, then
we would like to use the d;-cohomology to compute the full
d-cohomology. This is the idea of spectral sequence.
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Motivation

DA
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Let us motivate this idea by a standard example.
Consider the double complex
K= @ KP:9
p,q=0

which is equipped with two differentials

811 KPP — KPatL
8y : KP9 — KPTLa

such that
62 =02=0, 0102+ 026, =0.
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Consider the total complex
Tot*(K), Tot"(K)= P KP*
p+q=n

with the differential
D = 61 + 99.
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Our assumption on 41, d9 implies that
D* = 0.

Therefore (Tot®*(K), D) indeed defines a cochain complex, and we
are interested in
H*(Tot*(K), D).
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Let x be a representative of an element in H™(Tot*(K), D).

can decompose x into
X=xg+x1 4+, xé&Km™
The cocycle condition Dx = 0 is equivalent to

(51X0 =0
daxp = —01x1
dax1 = —01x2
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Let us formally write
u_n_é—lé cc_va_é—lé
X]. - 1 2X07 X2 - 1 2X17
Here the inverse 6;1 does not exist and this expression is only

heuristic. Then we would solve

1
—X{
110,16,

¢ 2

while xq represents a cocycle for (Tot®*(K), d1).
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Intuitively, we treat do as a perturbation of §; and
D = (61 + 02) = 761 (1 + 6, *69).

So

Dx* = 781 (1 + 67 152) X0 = "01x0 = 0.

b
1+6,16
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The above discussion is of course vague and heuristic. But it
motivates the following idea: we can construct a D-cocycle x by
first looking at a d1-cocycle xp as a leading approximation, and
then constructing

X1, X2, -

order by order using information from H®(d;).
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This leads to the following statements.
If H*(61) = 0, then H*(D) = 0.

In fact, let x be a D-cocyle as above. Since
01xp =0
and H*(4;) = 0, we can find
yo € K91 such that  xy = 61 yo.

Replacing x by x — Dyg, we can assume xg = 0 so x starts from x;.
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Then
DX:0:>(51X1:0.

By the same reason, we can further kill x; to assume that x starts
from xo. Iterating this process, we can eventually find y such that

x = Dy.

So x is a D-coboundary. It follows that H*(D) = 0.
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If H*(61) # 0, then we need to understand

whether §1x;11 = —dox; is solvable.

This puts extra condition on the initial data xy that allows to be an
approximation of a D-cocycle. For example, we want to solve

(51X1 = —(SQX().

Since
51(52X0) = —5251X0 = 0,

we know —dsxq is d1-closed. The problem is

whether —d9xq is d1-exact.
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We can view
(52 : H.<51) — H'(&l)

as defining a cochain complex (H®(d1), d2), then the solvability of
x1 asks that the class [xg] € H*(d1) is in fact da-closed

52 [X()] =0.
Therefore the “2nd”-order approximation of a D-cohomolpgy is
H*(H*(61), 02).

This will be called the Es-page. Similarly, we will have Es-page,
E4-page, etc, and eventually the full description of D-cohomologies.
Such process is the basic idea of spectral sequence.
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Spectral sequence for filtered chain complex
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Spectral sequences usually arise in two situations

1. A Z-filtration of a chain complex: a sequence of subcomplexes
o CF, CFpp1 Co-e.

2. A Z-filtration of a topological space: a family of subspaces
o CXp C Xpp1 C o

We first discuss the spectral sequence for chain complexes.
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An (ascending) filtration of an R-module A is an increasing
sequence of submodules

- CFpAC Fpp1AC -

indexed by p € Z. We always assume it is exhaustive and Hausdorff

| JFoA=A (exhaustive), (FoA=0 (Hausdorff).
P P
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The filtration is bounded if F,A = 0 for p sufficiently small and
FpA = A for p sufficiently large.

The associated graded module GrfA is defined by

Grl(A) =P Gl A, Gl A:= F,A/F, A
PEZL
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Definition

A filtered chain complex is a chain complex (C,, 9) together with
an (ascending) filtration F,C; of each C; such that the differential
preserves the filtration

3(FPC,') C FpC,'_l.
In other words, we have an increasing sequence of subcomplexes

FoCe C G.
Remark

There is also the notion of a descending filtration. We will focus
on the ascending case here.
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A filtered chain complex induces a filtration on its homology

FPH,'(C.) = Im(H,(FpC.) —H (C ))
In other words, an element [o] € H;(C,) lies in F, H;(C,) if and

only if there exists a representative x € F,C; such that [a] = [x].
Its graded piece is given by

Grf Hi(C,) =

. Ker((?: FPC,' — FpC,'_l)

Fp_1 C; + 8C,'+1 ’
Our notation of quotient means the quotient of the numerator by
its intersection with the denominator, i.e., AB =

A
ANB*

)
il
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Given a filtered R-module A, we define its Rees module as a
submodule of A[z, z~!] by

Ap=EPFAZ CAlzz |

PEZ
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Our conditions for the filtration can be interpreted as follows

1. increasing filtration: Afis a R[z]-submodule of A[z z7!] and
z: AF — AFf is injective.

2. exhaustive: Af[z 7] := AF @gy, Rlz, 27 '] equals Alz, z 1]
3. Hausdorff: | zPAr =0 in Alz, z71].

p=>0
The associated graded module is given by

Crl(A) .= Ar/zAE.
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Geometrically, we can think about A[z, z~!] as the space of
algebraic sections of the trivial bundle on C* with fiber A.

Then Af defines the extension of this bundle to C, whose fiber at
0 is precisely Grl(A).
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Let (G, 0, Fo) be a filtered chain complex. Let us denote its Rees
module by

Cr=EPFC 2 C Clz,z7 "),

PEZ

(Cr, 0) is also a subcomplex of (Ce[z z 1], 0). This defines a map

He(Cr,0) — He(Co[z,27Y],0) = Ho(C,, ) [z, 27 1.
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The image of
Ho(Cr,0) — Ho(C,,0)[z,27Y].

defines a C|z]-submodule of He(Cs,d)[z,z71]. It induces a
filtration on He(C,, Q) as described above.

Our goal is to analyze this map in order to extract the information
about this induced filtration on He (G, 0).
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Firstly
«(Cr,0) = P H.(FC.., 0)

PEZ

However, the zaction
H.(CF, 8) — H.(CF, 8)

may not be injective. Those elements that are annihilated by z”
for some finite m will be killed under ¢

One way to kill such elements is to look at im(z") for N big
enough. This motivates the following construction.
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Let us define
- {X S CF’8X < ZrCF}

zCr+ Z17r0CEg
E" can be viewed as the r-th order approximation. E" carries a
differential

T

Or: El— E', [x — z"[0x].

Obviously, &? = 0. We can define its homology by

H(E",0,) = kerr

im O,
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The homology of (E",d,) is precisely E*!

H(E,8,) = E+L.

Proof: Assume [x] € ker 0, in E". 0,[x] = z "[0x] = 0 implies the
existence «, § € Cg such that

Ox=Z(za + 217708) = 2 a + 205,

06 € 7t Cr.
We have 9(x — z8) = z' ™", so [x — zB] defines an element in
E™!. This class does not depend on the choice of a, 3.
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Therefore we have a natural map
f:kerd, — E!

which is clearly surjective.

Assume [x] = Oy[y]. Then there exists u, v € Cr such that
x=z "dy+ zu+ z""ov.

So
AIN) = [x— 2] = [z "0y + 2v)] = 0.

Therefore
im0, C ker f.
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On the other hand, assume f{[x]) = 0. Then there exists u, v e Cg

such that
x—zB=zu+z"0v, Ou=Za.

We find [x] = O[v]. Hence
ker f C im O,.

It follows that ker f=im 0,. This proves the claim. O
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We can describe (E", d,) explicitly in terms of components.

(CP)p,q = FpCpiq:

There is a natural identification

Cr= D (CAlpa-

P,qEZ

Let
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Similarly, we can decompose
r __ r
E = @ E ,q
P,qEZ

where

Er —_ {XE FpCp+q|aX€ Fp*GC+qfl}
pP,q

Fo1Cptq + OFptr—1Cprgr1

The differential J, acts on components by

OBy g —Ep tgir1, x—0x
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EY is given by
F,C
_ _ ~F _ _'pP-ptq
£ = Cr/2C Epq=Grf Cora 21250
E' is given by
x € Cglox € zC
El — { Fl A = H(Cg/zCF, 0), E;ly,q = HP+Q(GT§ Co)-

zCr+ 0Cr
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If the filtration of C;is bounded for each i/, then for any p, q,

EF - {x € FpCprq|0x =0}
Pq Fp_1 Cp+q + 8Cp+q+1

= GrpHpiq(G) for r>>0.

In this case, we say {E"}, converges to Gre, H(C,) and write

E*° = Gr, H(C,).
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Motivated by the above discussion, we now give the formal
definition of spectral sequence.

Definition

A spectral sequence (of R-modules) consists of
» an R-module E, , for any p,q € Z and r > 0;
> a differential 9, : £}, ; — E|,_, o+ such that 92 =0 and
Etl = H(F, 8;).

A spectral sequence converges if for any p, g, we have

E  =Efl=- for r>>0.

This limit will be denoted by EZ,.
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There is an associated spectral sequence for any filtered chain
complex (G, 0, Fo) where
E— {x € FoCoiqlOx € FprCpoig-1}

P,q

Fo—1Cotq+ OFpir—1Co1qt1

and
Or: Ep g — Ep

o X — OX.

—r,g+r—1»

The E!-page of the spectral sequence is
E. . =Hpiq(Grh C,).

If the filtration of C; is bounded for each j, then the spectral
sequence converges and

Epq = GrpHpiq(Co).



